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SUMMARY

When transport is advection-dominated, classical numerical methods introduce excessive artificial diffusion and
spurious oscillations. Special methods are required to overcome these phenomena. To solve the advection–
diffusion equation, a numerical method is developed using a discontinuous finite element method for the
discretization of the advective terms. At the discontinuities of the approximate solution, numerical advective
fluxes are calculated using one-dimensional approximate Riemann solvers. The method is stabilized with a
multidimensional slope limiter which introduces small amounts of numerical diffusion when sharp concentration
fronts occur. In addition, the diffusive term is discretized using a mixed hybrid finite element method. With this
approach, numerical oscillations are completely avoided for a full range of cell Peclet numbers. The combination
of discontinuous and mixed finite elements can be easily applied to 2D and 3D models using various types of
elements in regular and irregular meshes. Numerical tests show good agreement with 1D and 2D analytical
solutions. This approach is compared at the same time with two different numerical methods, a standard mixed
finite method and a finite volume approach with high-resolution upwind terms. Regular and irregular meshes are
used for the numerical tests to study the mesh effects on the numerical results. Our data show that in all cases this
approach performs well.# 1997 by John Wiley & Sons, Ltd.

KEY WORDS: advection–diffusion equation; discontinuous finite element method; mixed finite element method; solute transport
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INTRODUCTION

Finite elements and finite differences are classical methods used to solve the advection–diffusion
equation. This equation depends on the relative importance of the advective and diffusive fluxes on
the level of an element. When the transport is advection-dominated, the equation becomes
hyperbolic. The resolution of this equation by classical methods introduces excessive artificial
diffusion and spurious oscillations.1 Both these problems disappear if one refines the space and time
grids. However, in practice this cannot be done because of the considerable increase in computational
effort.
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Alternative methods have been developed to solve the advection–diffusion equation without
these phenomena of numerical diffusion and oscillations.

Two approaches are possible: one is based on the characteristic method or called the Eulerian–
Lagrangian method, which was introduced in the 1950s, and the other is based on a Eulerian
approach.

Characteristic methods decouple advection from diffusion in the transport equation. Many
approaches have been developed based on this concept: the method of characteristics2,3 and the
modified method of characteristics4 are the most popular examples of the application of this concept.
In these approaches there is no restriction on the Courant number, which was the greatest interest of
these methods. Other classes of Eulerian–Lagrangian methods have been developed in the 1980s and
1990s in conjunction with weak formulations such as the Galerkin Eulerian–Lagrangian formulation5

and the Eulerian–Lagrangian localized adjoint methods.6–8 It seems that the last class (the so-called
ELLAM method) is very efficient but needs to be applied effectively in multiple dimensions and
complex geometries and flows.9

Some words have to be said about the particle-tracking method based on a random walk process for
the description of the diffusive part of the transport equation.10–12This approach is commonly used. It
gives accurate results but incurs a high computational cost.13

In the context of a purely Eulerian approach, special schemes have been developed to solve
hyperbolic equations with finite differences or finite elements. Upwind schemes which have been
introduced in finite differences14 give first-order-accurate stable schemes with no oscillations, but
with too much numerical diffusion smearing the front. To overcome this problem, high-order-
accurate and non-oscillatory finite difference upwind schemes have been developed.15,16 These
schemes are generally constructed through a discontinuous piecewise polynomial representation of
the solution17 and are stabilized with slope limiters. This step determines the linear distribution of the
concentration in each element, without overshoots or undershoots with respect to neighbouring cell
averages. The numerical flux at an interface is obtained by solving a local Riemann problem. The
extension of these schemes to two space dimensions using quadrilateral control volumes is obtained
by writing the one-dimensional scheme in directions parallel to the axes. With these elements it
becomes difficult to calculate on domains with complex configurations.

Chakravarthy and Osher18 extended such schemes to triangular elements using a finite volume
approximation. Puttiet al.19 applied this method to the resolution of the general transport equation in
a saturated porous medium. This scheme is second-order-accurate for equilateral triangles.

High-order schemes with multidimensional slope limiters have been developed using
discontinuous finite elements by Chavent and Jaffre.20 We report here on the adaptation of the
latter to triangular elements for the discretization of the advective term. The dispersive term is
approximated using a mixed hybrid finite element formulation.

In this paper we briefly present the discontinuous finite element method in one dimension and
further extend this method to triangular elements in conjunction with the mixed hybrid approximation
for the discretization of the diffusive term. The second part of the paper discusses some numerical
results. We compare our technique with a classical mixed finite element method and with the high-
order finite volume method developed by Puttiet al.19 using a two-dimensional analytical solution.
Cases are presented for various cell Peclet numbers and CFL numbers and for regular and irregular
meshes to test the robustness of this method.

THE DISCONTINUOUS FINITE ELEMENT SCHEME IN ONE DIMENSION

We consider here the flow of a fluid that carries an inert and neutral solute through a porous medium.
Within the usual macroscopic approach the solute concentration (defined as mass of solute per
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volume of fluid) satisfies the classical advection–diffusion equation. This advection–diffusion
equation can be written as21

@c

@t
� ÿH � �~vc� � H � �D � Hc� � G; �1�

wherec is the concentration of the contaminant (M L73), ~v is the average pore water velocity vector
(L T71), D is the diffusion tensor (L2 T71) andG is the source or sink terms (M L73 T71).

A discontinuous finite element method is used for the discretization of the advective terms.
Without the diffusive terms, equation (1) becomes a hyperbolic equation:

@c

@t
� ÿH � �~vc�: �2�

The one-dimensional space interval�a; b� is discretized with a set of elementsK � �xi; xi�1� and
nodesx1 � a < . . . < xi�1 < . . . < x1�1 � b. We denote byDxK the size of elementK.

The concentration c is approximated in a space of discontinuous linear functions,
M1

� ff jK 2 �mK1;mK2�g. In other words, the restriction off over K is a linear combination of
mK1 andmK2. The functions ofM1 are discontinuous at the nodes of discretization, so we denote by
f in
i and f out

i the inside and outside limits respectively of a function inM1 at nodexi with respect to
elementK.

The linear variation inc over K is defined as

cK �x� � mK1�x�c
in
i � mK2�x�c

in
i�1; �3�

wherecin
i is the inside limit value ofc at nodei with respect toK andcin

i�1 is the inside limit value ofc
at nodei � 1 with respect toK.

A variational form of the hyperbolic equation is obtained over elementK:
�

K

@c

@t
m dx � ÿ

�

K
H � �~vc�m dx; �4�

wherem is a test function (2 M1 over K).
By using the Green formula, the following approximation equation is obtained:

�

K

@cK

@t
m dx �

�

K
~vKcK � Hm dx ÿ QK;i�1cin or out

i�1 m�xi�1� ÿ QK;ic
in or out
i m�xi�; �5�

whereQK;i is the flux at nodei for elementK. The out-flux is defined as positive and the in-flux as
negative (this flux must be continuous at the interface of two adjacent elements).

To preserve mass balance, the advective fluxes have to be uniquely defined at the interface of two
elements. A choice must be carried out at the interface between the discontinuous valuescin andcout.
The advective flux is obtained by solving a standard Riemann problem in the linear case. In other
words, the numerical advective flux is calculated with the upstream value ofc. The choice between
the discontinuous valuescin andcout depends on the sign ofQ �ci � cin

i if QK;i > 0 andci � cout
i if

QK;i < 0) (see Figure 1).

Figure 1. Discontinuous limit values ofc at nodesxi andxi�1

SOLUTION OF ADVECTION–DIFFUSION EQUATION 597

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 595–613 (1997)



We will use an explicit time discretization scheme. Considering0 � t04 t1 4 . . . 4 tn . . . and
with Dtn � tn�1 ÿ tn a time discretization, equation (5) becomes

�

K

cn�1
K ÿ cn

K

Dtn
m dx �

�

K
~vKcn

K � Hm dx ÿ QK;i�1cin or out;n
i�1 m�xi�1 ÿ QK;ic

in or out;n
i m�xi�: �6�

By using successivelymK1 and mK2 as test functions and solving the Riemann problem at the
interfaces, a system of two unknowns per element,cin;n�1

i�1 andcin;n�1
i (compounds ofcn�1

K in the bases
mK1 andmK2), is obtained. This scheme does not have good stability properties and the calculated
solution oscillates.

To increase the time discretization accuracy, an intermediate time step at timetn�1=2 is introduced.
The advective fluxes are calculated using the concentration values defined inside elementK.

Step 1. Calculation ofcn�1=2 with local values

�

K

cn�1=2
K ÿ cn

K
1
2Dtn

m dx �

�

K
~vKcKn � Hm dx ÿ QK;i�1cin;n

i�1m�xi�1� ÿ QK;ic
in;n
i m�xi�: �7�

Step 2. Calculation ofcn�1� by solving a Riemann problem

�

K

cn�1�
K ÿ cn

K

Dtn
m dx �

�

K
~vKcn�1=2

K � Hm dx ÿ QK;i�1cin or out;n�1=2
i�1 m�xi�1� ÿ QK;ic

in or out;n�1=2
i m�xi�:

�8�

To stabilize this scheme, a slope-limiting step is introduced. The slope-limiting operatorL
associates with each functioncn�1�

�2 M1
� a functionL�cn�1

�2 M1� which satisfies the following
conditions.

(a) Preservation of mass balance by

cn�1
K �

�

K

cn�1
K

DxK
dx �

cin;n�1
i � cin;n�1

i�1

2
� cn�1�

K �

cin;n�1*
i

2
: �9�

(b) Limitation of the slope by setting an upper and a lower limit value tocin;n�1
i andcin;n�1

i�1 :

�1 ÿ y�cn�1�
K � ymin �cn�1�

Kÿ1 ; cn�1�
K �4 cin;n�1

i 4 �1 ÿ y�cn�1�
K � ymax�cn�1�

Kÿ1 ; cn�1�
K �; �10�

�1 ÿ y�cn�1�
K � ymin �cn�1�

K�1 ; cn�1�
K �4 cin;n�1

i�1 4 �1 ÿ y�cn�1�
K � ymax�cn�1�

K�1 ; cn�1�
K �; �11�

wherey is a weighting parameter�04y4 1�. (With y � 1 the previous relations specify that
cin;n�1

i andcin;n�1
i�1 have not to be greater or smaller than the mean concentration in the element

K ÿ 1;K;K � 1:�

Relations (10) and (11) imply that ifcn�1�
k , is a local minimum or maximum ofc, thencin;n�1

i and
cin;n�1

i�1 are defined by

cin;n�1
i�1 � cin;n�1

i � cn�1�
K if cn�1�

K 5 max�cn�1�
Kÿ1 cN�1�

K�1 � or cn�1�
K 4 min cn�1�

K�1 �: �12�

If we are not in case (12) (i.e. it is not a local minimum or maximum forc), note thatcn�1
K is not

uniquely defined by (9)–(11). To define it uniquely, we impose thatcn�1
K be as close as possible to
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cn�1�
K . A minimization problem of dimension two has to be solved for the elementK to determine

cn�1
K .
An objective functionJK is defined by

JK �c
in;n�1
i ; cin;n�1

i�1 � � cin;n�1
i ÿ cin;n�1*

i















2
� cin;n�1

i�1 ÿ cin;n�1*
i�1















2
: �13�

Thencin;n�1
i andcin;n�1

i�1 are estimated by minimizing the objective functionJK and satisfying the
constraints (9)–(11). The slope-limiting effects can be visualized graphically as in Figure 2.

Figure 2. Slope-limiting effects: linear discontinous variation in concentration before (—) and after ( ) slope limiting

Figure 3. One-dimensional pure advection example
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The discontinuous finite element method associated with this slope limiter is total-variation-
diminishing (TVD) if the following criterion is respected:22

CFL4 max
1

1 � 2y
;

1
2

� �

for every element K;

CFL being the Courant–Friedrichs–Levy number equal tovKDt=DxK . The TVD property insures that
the scheme does not produce non-physical oscillations. Moreover, the slope limiter introduces the
smallest amount of numerical diffusion fory unit to unity.23 Figure 3 shows a numerical pure
advection example. The discontinuous finite element method gives accurate results. In one dimension
this method is very similar to the high-order finite difference method invented by Van Leer.15 The
discontinuous finite element method is more expensive compared with the high-order finite difference
scheme in one dimension, but it can be easily extended in a true multidimensional scheme.

RESOLUTION OF THE ADVECTION–DIFFUSION EQUATION IN 2D WITH TRIANGULAR
ELEMENTS

Approximation of the convective term

As previously, the convective term is approximated by a discontinuous finite element method. The
two-dimensional domain is discretized with triangular elementsK.

The concentrationc is approximated in a space of discontinuous bilinear functions,
M1 � f f jK 2 �mK1;mK2;mK3�g, which means that the restriction off over K is a linear combination
of mK1;mK2 andmK3.

The functions ofM1 are discontinuous at nodes of discretization. By considering the triangular
elementK formed by nodes A, B and C, the variation inc over K can be written as

cK�x; y� � mK1cK
A � mK2cK

B � mK3cK
C ; �14�

wherecK
A is the value ofc at node A in elementK, cK

B is the value ofc at node B in elementK andcK
C

is the value ofc at node C in elementK.
We denote bycin

AB the linear variation inc over edge AB in elementK andcout
AB the linear variation

in c over edge AB in the element adjacent toK. In order to simplify the notation,~v andc (without
index K) will denote the approximations of velocity and concentration over elementK respectively.
Second-order time discretization is used to solve the hyperbolic equation (2).

Step 1. calculation ofcn�1=2 with local values
�

K

cn�1=2
ÿ cn

1
2Dtn

m dx �

�

K
~vcn

� Hm dx ÿ QK;AB

�

AB

cin;n
AB m

AB
ds

ÿ QK;BC

�

BC

cin;n
BC m

BC ds
ÿ QK;CA

�

CA

cin;n
CA m

CA
ds; �15�

wherem is a test function ofM1 over K, AB (respectivelyBC and CA) is the length of edge AB
(respectively BC and CA) andQK;AB is the flux through edge AB with respect to~nK;AB, the latter
being the unit exterior normal vector of this edge for elementK (sign(QK;AB) � sign(~nK;AB � ~v)). The
flux is continuous at the interface of two adjacent elementsK andK 0

�QK;AB � QK 0AB � 0�.
By using successively the three basis functions ofM1 overK as test functions, we obtain a system

of three unknowns per elementK. The values at each node inK are calculated by solving this local
system.
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Step 2. Calculation ofcn�1� by solving the Riemann problem
�

K

cn�1�
ÿ cn

Dtn
m dx �

�

K
~vcn�1=2

� Hm dx ÿ QK;AB

�

AB

cin or out;n�1=2
AB m

AB
ds

ÿ QK;BC

�

BC

cin or out;n�1=2
BC m

BC
ds ÿ QK;CA

�

CA

cin or out;n�1=2
CA m

CA
ds: �16�

In this step the numerical advective flux is calculated with the upstream ‘value’ ofc over the
interface of two elements. The choice betweencin

AB andcout
AB depends on the sign ofQK;AB.

(a) If QK;AB5 0, thencAB � cin
AB.

(b) If QK;AB < 0, thencAB � cout
AB.

The scheme is stabilized with multidimensional slope limiters (extension of the one-dimensional
slope limiter). For elementK we introduce the following notation.

(a) cK is the average ofc over K : cK � �cK
A � cK

B � cK
C �=3.

(b) min(A) is the minimum of thecn�1�
K of all elements having A for a node.

(c) max(A) is the maximum of thecn�1�
K of all elements having A for a node.

(d) min(K) is the minimum of thecn�1�
K of all elements having a common node with elementK.

(e) max(K) is the maximum of thecn�1�
K of all elements having a common node with elementK.

The multidimensional slope-limiting operatorL associates with each functioncn�1�
�2 M1

� a
function L�cn�1�

� � cn�1
�2 M1

� satisfying the following conditions. In order to preserve mass
balance,

cn�1
K � cn�1�

K : �17�

In order to limit the variation,

min�A�4 cK;n�1
A 4 max�A�; �18�

min�B�4 cK;n�1
B 4 max�B�; �19�

min�C�4 ck;n�1
C 4 max�C�: �20�

Whencn�1�
K corresponds to a local maximum ofc in K, then relations (17)–(20) imply that

cK;n�1
A � cK;n�1

B � cK;n�1
C � cn�1�

K if cn�1�
K 5 max�K� or cn�1�

K 4K min�K�: �21�

If we are not in case (21),cn�1
K is not uniquely defined. We impose thatcn�1

K be as close as possible
to cn�1�

K . A minimization problem of dimension three has to be solved for the element to determine
cn�1

K .
An objective functionJ is defined by

J �cK;n�1
A ; cK;n�1

B ; cK;n�1
C � � cK;n�1

A ÿ cK;n�1*
A















2
� cK;n�1

B ÿ cK;n�1*
B















2
� cK;n�1

C ÿ cK;n�1*
C















2
: �22�

ThencK;n�1
A ; cK;n�1

B andcK;n�1
C are estimated by minimizing the objective functionJ and satisfying

the constraints (17)–(20). The method used to solve this minimization problem is the saddle point
method.24

Approximation of the diffusive term

The diffusive term is discretized with a mixed approximation.20 We introduce the diffusive flux
~qd � ÿD � Hc. On each elementK; c and ~qd are approached by an approximation of
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(a) the average ofc on K : cK

(b) the average ofc along each edgeEi of K, denotedTCK;i for i � 1; 2; 3
(c) ~qd � ÿD � Hc, noted~qd;K .

~qd;K has the following properties overK.25,26

(a) H � ~qd;K is constant overK.
(b) 8i � 1; 2; 3; ~qd � ~nKi is constnat over faceEi; ~nKi being the unit exterior normal vector of edge

Ei.
(c) ~qd;K is perfectly determined by the knowledge of its fluxQd;K;i through edgeEi�i � 1; 2; 3�.

The diffusive flux can be calculated using basis vectorial functions�~wi�i�1;2;3 defined by
�

Ej

~wi � ~nKj ds � dij for j � 1; 2; 3;

wheredij is the Kronecker symbol.
The vector~wi corresponds to a vector with a flux of unity through edgeEi and zero flux through the

others. The expressions of the basis functions are given e.g. by Chavent and Roberts.27 Any vector
~qd;K can be written as a linear combination of�~wi�i�1;2;3:

~qd;K �

P3

j�1
Qd;K; j ~wj:

The expression of~qd;K is then written in variational form over each elementK:
�

K
�Dÿ1

� ~qd;K� � ~s dx � ÿ

�

K
Hc � ~s dx; �23�

where�s is a sufficient regular test function.
By carrying out the same calculations as Chavent and Roberts,27 we obtain approximation equation

P3

j�1
BijQd;K;j � cK ÿ TCK;i 8i � 1; 2; 3; �24�

where

Bij �

�

K
��Dÿ1

K � wj� � wi� dx:

If we define the symmetric 363 matrix BK associated with elementK as BK � �Bij� (which is
invertible), the previous equation becomes in matrix form

Qd;K � Bÿ1
K �cKDIV T

K ÿ TCK�; �25�

where

DIV T
K � �elementary divergence matrix�T �

1

1

1

2

6
4

3

7
5;

Qd;K � �Qd;K;i�; TCK � �TCK;i�; BK � �Bij�:

By using an index notation referring to the edges, the components ofQd;K are

Qd;K;E � cKaK;E ÿ

P

I�K
Bÿ1

K;E;E0TCK;E0 ; with aK;E �

P

E�K
Bÿ1

K;E;E0 �26�

where
P

E�K denotes a sum over the edgesE of K.
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By using the continuity of the diffusive fluxes (i.e.Qd;K;E � Qd;K 0E � 0 for every edgeE, K andK 0

being adjacent) and equation (26), the following relation can be obtained:

aK;EcK � aK 0EcK 0 ÿ

P

E0

�K
Bÿ1

K;E;E0 TCE0 ÿ

P

E0

�K 0

Bÿ1
K 0

;E;E0 TCE0 � 0: �27�

This equation is written in matrix form as

MC ÿ NTC ÿ I � 0; �28�

whereTC is the vector formed by theTCE 8E =2 Dirichlet-type boundary,C is the vector formed by
the cK ,

M � �ME;K �ne;nk; with ME;K �

aK;E if E � K;

0 if E �= K;

�

N � �NE;E0 �ne;ne; with NE;E0 �

P

K�E and E0

Bÿ1
K;E;E0 ;

where
P

K�E and E0
denotes a sum over the elementsK containing edgesE andE0, and

I � �IE�ne; with IE �

P

E0

��K�E�
BK;E;E0 TCE0 8E0

2 Dirichlet-type boundary:

The numbersne andnk are the number of edges and the number of elements respectively. With this
matrix relation we can determineTC from C by solving the linear equation system whose associated
matrix N is symmetric positive definite:

NTC � MC ÿ I: �29�

This system is solved efficiently by a standard method such as a preconditioned conjugate gradient
method.

The diffusive termH � ~qc � ÿH � �DHc� is then discretized at timetn by
�

K
H � ~qn

d;K �

�

K
H �

P

E�K
Qn

d;K;E ~wE

� �

�

P

E�K
Qn

d;K;E

�

E
~wE � ~nE �

P

E�K
Qn

d;K;E: �30�

H � ~qn
d;K being constant overK, equation (30) can be written as

H � ~qn
d;K �

1
jKj

P

E�K
Qn

d;K;E �31�

wherejKj is the area of elementK.
Plugging equation (26) into (31) gives immediately

H � ~qn
d;K �

1
jKj

aKcn
K ÿ

P

E0

�K
�aK;E0TCn

K;E0 �

� �

; �32�

with

aK;E �

P

E0

�K
Bÿ1

K;E;E0 ; aK �

P

E�K
aK;E:

Complete solution of the convection–diffusion equation

We now combine the discontinuous finite elements and mixed finite elements for the resolution of
the advection–diffusion equation (1). The initial values of the concentration have to be determined for
the edges and for the nodes in each element.
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Step 1. Calculation ofcn�1=2 with local values. The diffusive terms (32) are introduced into
equation (15):

�

K

cn�1=2
ÿ cn

1
2Dtn

m �

�

K
~vcn

� Hm ÿ QK;AB

�

AB

cin;n

ABm

AB
ds

ÿ QK;BC

�

BC

cin;n
BC m

BC
ds ÿ QK;CA

�

CA

cin;n
CA m

CA
ds

ÿ

1
jKj

�

aKcn
K ÿ

P

E0

�K
�aK;E0TCn

K;E0 �

��

K
m � G

�

K
m; �33�

wherem is successively one of the three basis functions ofM1 over K.
The value at timetn�1=2 at each node inK is easily calculated by solving a local system. We

determine then the value ofcn�1;2
K and the average ofc overK. The concentrations per edge,TCn�1=2,

are calculated fromcn�1=2
K by solving system (29).

Step 2. Calculation ofcn�1� by solving the Riemann problem
�

K

cn�1�
ÿ cn

Dtn
m �

�

K
~vcn�1=2

� Hm ÿ QK;AB

�

AB

cin or out;n�1=2
AB m

AB
ds ÿ QK;BC

�

BC

cin or out;n�1=2
BC m

BC
ds

ÿ QK;CA

�

CA

cCAin or out;n�1=2m

CA
ds ÿ

1
jKj

aKcn�1=2
K ÿ

P

E0

�K
�aK;E0TCn�1=2

K;E0
�

� ��

K
m

� G

�

K
m; �34�

wherem is successively one of the three basis functions ofM1.
The values at each node inK are calculated by solving a local system.

Step 3. Slope limitation.We calculatecn�1
K satisfying (17)–(21) as close as possible tocn�1�

K . The

concentrations per edge,TCn�1, are then calculated fromcn�1
K by solving system (29).

With this method the mass balance is exact over each elementK. The advective fluxes are uniquely
defined by solving a Riemann problem at the interface of two elements. The dispersive flux is
continuous from one element to the adjacent one. Dirichlet boundary conditions have to be imposed
for the edges and for the nodes per element. This technique has been developed for any kind of
triangular elements: regular (equilateral) or irregular. The accuracy and robustness of the method are
now tested in two comparison studies. This method will be referred to as the discontinuous finite
element method.

COMPARISON STUDIES

Test problem 1

In the first test problem the transport of a pulse in a rectangular two-dimensional region (Figure 4)
is modelled for a pure advection problem. The flow is assumed to be uniform. The mesh being
regular, this problem has the advantages that the transport occurs at various angles and the Courant
number is not constant over the simulation domain. With the irregular mesh we test the robustness of
the scheme presented here against the high-order finite volume method developed by Puttiet al.19

Their approach is based on a finite volume formulation and an implementation of a high-resolution
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upwind scheme for the discretization of the convective fluxes. By defining triangular cells, this
scheme seems to be very attractive.

Figure 4 also illustrates the pulse with an initial height of 10 units at the beginning of the
simulation. Figure 5 shows the transport of the pulse just before reaching the limit of the domain with

Figure 4. Advection of a pulse in an irregular mesh

Figure 5. Pulse shape after displacement in domain forPe � 1

SOLUTION OF ADVECTION–DIFFUSION EQUATION 605

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 595–613 (1997)



the two methods. As mentioned by Puttiet al.,19 their scheme destroys the accuracy when non-
equilateral triangles are considered. What is surprising is how the accuracy is lost on this example.

Test problem 2

For the second application we compare our scheme with the high-order finite volume method of
Putti et al.19 and with a classical finite element method. These numerical methods are verified against
a two-dimensional analytical solution corresponding to the following conditions (Figure 6).

(a) The domain is homogeneous.
(b) The flow is one-dimensional and steady state; the pore velocityv is parallel to thex-axis.
(c) The initial condition is zero initial concentration.
(d) The boundary condition is a Dirichlet condition:c�0; y; t > 0� � c0 if jyj < a (in our case

a� 8 m).

The analytical solution for this case is given by Leij Feike and Dane.28 To compare the accuracy of
the different methods, this problem is solved for various values of the grid Peclet number (designated
Pe) as defined by Puttiet al.19 The solution of this problem is shown at timet � 50 s. The parameters
used in the different cases are reported in Table I. Regular (Figure 7) and irregular (the same as the
one used in the first case study, Figure 4) meshes are used to study mesh effects on the numerical
results.

In the first case the transport is diffusion-dominated�Pe4 2�. This case can be easily solved with
the classical methods (conforming finite elements, mixed finite elements or finite differences). We did
verify that the solution obtained with the discontinuous finite element method and the irregular grid
agrees well with the analytical solution (Figure 8).

The second case is advection-dominated (Pe � 10). Longitudinal profiles aty � 4 m are used to
see the effects of both longitudinal and transverse diffusion. The solutions obtained for the regular
mesh with the high-order finite volume method and the discontinuous finite element method are very
close to the analytical solution (Figure 9). The concentration front is well described. The results

Figure 6. Two-dimensional convection–diffusion problem

Table I. Parameters used in various cases

v�x� v�y� DL DT Dx Dy Pe
Case (m s71) (m s71) (m2 s71) (m2 s71) (m) (m)

1 1�0 0�0 2 0�2 2�0 2�0 1
2 1�0 0�0 0�2 0�02 2�0 2�0 10
3 1�0 0�0 261075 261076 2�0 2�0 10000

606 P. SIEGELET AL.

INT. J. NUMER. METHODS FLUIDS, VOL.24: 595–613 (1997) # 1997 by John Wiley & Sons, Ltd.



obtained with the mixed approximation show oscillations (Figure 10). The data show a well-known
result: the ‘classical’ methods are not adapted to approximate an advection-dominated transport
equation. With the irregular mesh the discontinuous finite element method gives accurate results
(Figure 11). On the other hand the high-order finite volume method now introduces longitudinal
diffusion and transverse artificial diffusion (Figure 12).

The third case is a more advection-dominated case withPe � 10; 000. On the profiley � 4 with
the two high-order methods (finite volume and discontinuous finite element approaches) no
significant numerical diffusion appears for the regular mesh. With the irregular mesh the solution of
the high-order finite volume method shows longitudinal diffusion (Figure 13). Good results were
obtained with the discontinuous finite element method and the irregular mesh (Figure 13).

Figure 7. Regular mesh

Figure 8. Analytical solution for diffusion-dominated case and computational results given by discontinuous finite element
method with irregular mesh
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To see the effects of the time step on the numerical results of the two high-order methods, the third
case (Pe � 10;000) was studied with the regular mesh. Figures 14 and 15 show the numerical results
obtained with both methods for various Courant–Friedrich’s–Levy numbers.

For a linear convective flux and triangular elements,CFL can be defined as19

CFLp �
1
2

�

@K j~v � ~njds

jKj

Dt: �35�

This is a possible calculation forCFL with triangular elements, but other definitions are available.
For example, Kaddouri29 proposes the formulaCFLk � �k ~v k �Dt�=h, h being the ratio between the
surface and perimeter of the triangle andk ~v k the norm of the velocity. Of course the stability
criterion depends on the choice of theCFL definition.

Figure 9. Comparison of results given by two high-order numerical methods (with regular mesh) and analytical solution for
Pe � 10
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With a choice ofy� 1 (which introduces the smallest amount of numerical diffusion in the slope
limitation associated with the discontinuous finite elements), numerical experiments suggest that the
scheme is stable forCFLp 4 0�9. The algorithm proposed by Puttiet al.19 gives accurate results for
CFLp � 1. The concentration front is indeed well described with the high-order finite volume method

Figure 10. Comparison of results given by two high-order numerical methods (with regular mesh), mixed method and analytical
solution using profiley � 4 (for Pe � 10

Figure 11. Comparison of results given by two high-order numerical methods with irregular mesh (forPe � 10)
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for CFLp � 1 (Figure 14). Numerical diffusion appears with this scheme whenCFLp goes away from
unity (Figure 14). With the discontinuous finite element method the concentration front is well
described for the variousCFLp (Figure 15), but with the restriction ofCFLp 4 0�9. Only small
diffusion appears whenCFLp is far from 0�9: this is certainly due to the fact that we use a

Figure 12. Comparison of results given by two high-order numerical methods (with irregular mesh) and analytical solution
using profiley � 4 (for Pe � 10)

Figure 13. Comparison of results given by two high-order numerical methods (with irregular mesh) and analytical solution
using profiley � 4 (for Pe � 100; 000)
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discontinuous formulation for the description of the concentration in each element. The presented
scheme is unstable forCFLp � 1 (Figure 15).

The discontinuous finite element method is well adapted to the modelization of real cases where
the velocity is not constant in the domain. In our example this is not the case of the high-order finite
volume method: the numerical results obtained with this method seem to be very sensitive to any
variation in space ofCFL.

Figure 14. Effects of time step on numerical results given by high-order finite volume method

Figure 15. Effects of time step on numerical results given by discontinuous finite element method

SOLUTION OF ADVECTION–DIFFUSION EQUATION 611

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 595–613 (1997)



CONCLUSIONS

A method based on discontinuous finite elements for the discretization of the advective term and
mixed approximation for the diffusive term is presented for the numerical solution of the solute
transport equation in a porous medium. With the discontinuous finite element method the advective
fluxes are uniquely defined by solving a Rieman problem at the interface of two elements. This
method stabilized with a slope limiter is especially adapted to the resolution of hyperbolic equations.
The slope limiter introduces small amounts of numerical diffusion when sharp concentration fronts
occur. With the mixed approximation the diffusive flux is continuous from one element to the
adjacent one and the mass balance is exact over the element. The introduction of the mixed diffusive
term in this method requires the resolution of a linear equation system whose associated matrix is
symmetric positive definite. This operation increases the computational cost compared with classical
high-order finite difference schemes. The combination of these two methods can be applied to 2D and
3D models using different types of elements with regular and irregular meshes. A two-dimensional
scheme is developed using triangular elements.

With this smooth, numerical oscillations are completely avoided fro the full range of grid Peclet
numbers. Numerical tests show good agreement with 1D and 2D analytical solutions. This approach
is compared at the same time with two numerical methods, namely a mixed finite element method
and a finite volume approach with high-resolution upwind terms. Regular and irregular meshes are
used for the numerical tests to study mesh effects on the numerical results. The irregular mesh
destroys the global second-order accuracy of the high-order finite volume scheme. The discontinuous
finite element method performs well with triangles of any shape and for the full range of Peclet
numbers. The discontinuous finite element method is not very sensitive to the variation inCFL (with
the restriction ofCFL4 0:9 if CFL is defined by equation (35)) compared with the high-order finite
volume scheme, whereCFL has to be as close as possible to unity.

In practical situations the presented algorithm is very useful as long as the mass transport is more
and more solved in strongly heterogeneous media and the transport equation consequently becomes
advection-dominated.

REFERENCES

1. P. S. Hukaykorn and G. F. Pinder,Computational Methods in Subsurface Flow, Academic, San Diego, CA, 1983.
2. A. O. Garder, D. W. Peacemann and A. L. Pozzi, ‘Numerical calculations of multidimensional miscible displacement by

the method of characteristics’,Soc. Pet. Eng., 4, 26–36 (1964).
3. L. F. Konikow and J. D. Bredehoeft, ‘Computer model of two-dimensional solute transport and dispersion in groundwater’,

Techniques of Water-Resource Investigation of the United States Geological Survey, Book 7, Chapter C2, United States
Government Printing Office, Washington, DC 1978.

4. J. Douglas Jr. and T. F. Russell, ‘Numerical methods for convection–diffusion problems based on combining the method of
characteristics with finite element or finite difference procedures’,SIAM J. Numer. Anal., 19, 871–885 (1982).

5. S. P. Neumann, ‘A Eulerian–Lagrangian numerical scheme for the dispersion convection equation using conjugate space
time grids’,J. Comput. Phys., 41, 270–294 (1981).

6. T. F. Russell, ‘Eulerian–Lagrangian localized adjoint methods for advection-dominated problems’,Proc. 13th Bienn. Conf.
on Numerical Analysis, Pitman, Dundee, 1989.

7. M. A. Celia, ‘Eulerian–Lagrangian localized adjoint methods for contaminant transport simulations’,Proc. 10th Int. Conf.
on Computational Methods in Water Resources, Kluwer, Dordrecht, 1994.

8. M. A. Celia, T. F. Russell, I. Herrera and R. E. Ewing, ‘An Eulerian–Lagrangian localized adjoint method for the advection
diffusion equation’,Adv. Water Resources, 13, 187–206 (1990).

9. A. Oliveira and A. M. Baptista, ‘A comparison of integration and interpolation Eulerian–Lagrangian methods’,Int. j.
numer methods fluids, 21, 183–204 (1995).

10. Ph. Ackerer and W. Kinzelbach, ‘Mode´lisation du transport de contaminant par la me´thode de marche au hasard: influence
des variations du champ d’e´coulement au cours du temps sur la dispersion’,Proc. Symp. Int. sur l’Approache Stochastique
des Ecoulments Souterrains, Montvillargenne, 1985, pp. 446–458.

612 P. SIEGELET AL.

INT. J. NUMER. METHODS FLUIDS, VOL.24: 595–613 (1997) # 1997 by John Wiley & Sons, Ltd.



11. T. A. Prickett, T. G. Naymik and C. G. Lonquist, ‘A random walk solute transport model for selected groundwater qulaityb
evaluations’,Illinois State Water Survey, Bull. 65, 1981.

12. G. J. M. Uffink, ‘Analysis of dispersion by the random walk method’,Ph.D. Thesis, Delft University, 1990.
13. W. Kinzelbach,Numerische Methoden zur Modellierung des Transports von Schadstoffen im Grundwasser, 2. Aufl,

Oldenbourg, 1992.
14. R. Peyret and T. D. Taylor,Computational Methods for Fluid Flow, Springer, New York, 1983.
15. V. van Leer, ‘Towards the ultimate conservative scheme: IV. A new approach to numerical convection’,J. Comput. Phys.,

23, 276–299 (1977).
16. P. L. Roe, ‘Characteristic-based schemes for the Euler equation’,Ann. Rev. Fluid Mech., 18, 337–365 (1986).
17. V. Van Leer, ‘Towards the ultimate conservation scheme: V. A second order sequel to Godunov’f method’,J. Comput.

Phys., 32, 101–136 (1979).
18. S. Chakravarthy and S. Osher, ‘Computing with high resolution: upwind schemes for hyperbolic equations’,Lect. Notes

Appl. Math., 22, 57–86 (1985).
19. M. Putti, W. W.-G. Yeh and W. A. Mulder, ‘A triangular finite volume approach with high-resolution upwind terms for the

solution of groundwater transport equations’,Water Resources Res., 26, 2865–2880 (1990).
20. G. Chavent and J. Jaffre,Mathematical Models and Finite Elements for Reservoir Simulation, North-Holland, Amsterdam,

1986.
21. J. Bear,Hydraulics of Groundwater, McGraw-Hill, New York, 1979.
22. V. Gowda, ‘Discontinuous finite elements for nonlinear scalar conservation laws’,Thèse de Doctorat, Universite´ Paris IX-
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