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SUMMARY

When transport is advection-dominated, classical numerical methods introduce excessive artificial diffusion and
spurious oscillations. Special methods are required to overcome these phenomena. To solve the advection—
diffusion equation, a numerical method is developed using a discontinuous finite element method for the
discretization of the advective terms. At the discontinuities of the approximate solution, numerical advective
fluxes are calculated using one-dimensional approximate Riemann solvers. The method is stabilized with a
multidimensional slope limiter which introduces small amounts of numerical diffusion when sharp concentration
fronts occur. In addition, the diffusive term is discretized using a mixed hybrid finite element method. With this
approach, numerical oscillations are completely avoided for a full range of cell Peclet numbers. The combination
of discontinuous and mixed finite elements can be easily applied to 2D and 3D models using various types of
elements in regular and irregular meshes. Numerical tests show good agreement with 1D and 2D analytical
solutions. This approach is compared at the same time with two different numerical methods, a standard mixed
finite method and a finite volume approach with high-resolution upwind terms. Regular and irregular meshes are
used for the numerical tests to study the mesh effects on the numerical results. Our data show that in all cases this
approach performs well®) 1997 by John Wiley & Sons, Ltd.

KEY WORDS: advection—diffusion equation; discontinuous finite element method; mixed finite element method; solute transport
in porous media

INTRODUCTION

Finite elements and finite differences are classical methods used to solve the advection—diffusion
equation. This equation depends on the relative importance of the advective and diffusive fluxes on
the level of an element. When the transport is advection-dominated, the equation becomes
hyperbolic. The resolution of this equation by classical methods introduces excessive artificial
diffusion and spurious oscillatiortsBoth these problems disappear if one refines the space and time
grids. However, in practice this cannot be done because of the considerable increase in computational
effort.
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596 P. SIEGELET AL.

Alternative methods have been developed to solve the advection—diffusion equation without
these phenomena of numerical diffusion and oscillations.

Two approaches are possible: one is based on the characteristic method or called the Eulerian—
Lagrangian method, which was introduced in the 1950s, and the other is based on a Eulerian
approach.

Characteristic methods decouple advection from diffusion in the transport equation. Many
approaches have been developed based on this concept: the method of characfesisticthe
modified method of characteristftare the most popular examples of the application of this concept.

In these approaches there is no restriction on the Courant number, which was the greatest interest of
these methods. Other classes of Eulerian—Lagrangian methods have been developed in the 1980s and
1990s in conjunction with weak formulations such as the Galerkin Eulerian—Lagrangian forntulation

and the Eulerian—Lagrangian localized adjoint metHo8$t seems that the last class (the so-called
ELLAM method) is very efficient but needs to be applied effectively in multiple dimensions and
complex geometries and flows.

Some words have to be said about the particle-tracking method based on a random walk process for
the description of the diffusive part of the transport equatfbti?This approach is commonly used. It
gives accurate results but incurs a high computational *Cost.

In the context of a purely Eulerian approach, special schemes have been developed to solve
hyperbolic equations with finite differences or finite elements. Upwind schemes which have been
introduced in finite differencé$ give first-order-accurate stable schemes with no oscillations, but
with too much numerical diffusion smearing the front. To overcome this problem, high-order-
accurate and non-oscillatory finite difference upwind schemes have been devEldpddhese
schemes are generally constructed through a discontinuous piecewise polynomial representation of
the solutiod” and are stabilized with slope limiters. This step determines the linear distribution of the
concentration in each element, without overshoots or undershoots with respect to neighbouring cell
averages. The numerical flux at an interface is obtained by solving a local Riemann problem. The
extension of these schemes to two space dimensions using quadrilateral control volumes is obtained
by writing the one-dimensional scheme in directions parallel to the axes. With these elements it
becomes difficult to calculate on domains with complex configurations.

Chakravarthy and Osh&rextended such schemes to triangular elements using a finite volume
approximation. Puttet al*° applied this method to the resolution of the general transport equation in
a saturated porous medium. This scheme is second-order-accurate for equilateral triangles.

High-order schemes with multidimensional slope limiters have been developed using
discontinuous finite elements by Chavent and J&ftréve report here on the adaptation of the
latter to triangular elements for the discretization of the advective term. The dispersive term is
approximated using a mixed hybrid finite element formulation.

In this paper we briefly present the discontinuous finite element method in one dimension and
further extend this method to triangular elements in conjunction with the mixed hybrid approximation
for the discretization of the diffusive term. The second part of the paper discusses some numerical
results. We compare our technique with a classical mixed finite element method and with the high-
order finite volume method developed by Puattial*° using a two-dimensional analytical solution.
Cases are presented for various cell Peclet numbers and CFL numbers and for regular and irregular
meshes to test the robustness of this method.

THE DISCONTINUOUS FINITE ELEMENT SCHEME IN ONE DIMENSION

We consider here the flow of a fluid that carries an inert and neutral solute through a porous medium.
Within the usual macroscopic approach the solute concentration (defined as mass of solute per
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SOLUTION OF ADVECTION-DIFFUSION EQUATION 597

volume of fluid) satisfies the classical advection—diffusion equation. This advection—diffusion
equation can be written &s
ac -
Ez—V~(vc)+V-(D-Vc)+G, @
wherec is the concentration of the contaminant (M £), 7 is the average pore water velocity vector
(L T™Y, D is the diffusion tensor (ET~) andG is the source or sink terms (M 13 T~%).
A discontinuous finite element method is used for the discretization of the advective terms.
Without the diffusive terms, equation (1) becomes a hyperbolic equation:
ac N
— = -V . (ve). 2
o (3c) @)
The one-dimensional space interyal b] is discretized with a set of elemers= [x;, x; 4] and
nodesx; =a < ... <Xju1 < ... <Xy, = b. We denote by\xy the size of elemerk.
The concentrationc is approximated in a space of discontinuous linear functions,
M?® = {f |« € (mky, Mk2)}. In other words, the restriction df over K is a linear combination of
Mk, andmg,. The functions oM? are discontinuous at the nodes of discretization, so we denote by
f" andf,°" the inside and outside limits respectively of a functiorMA at nodex; with respect to
elementK.
The linear variation irc overK is defined as

Ck(X) = My ()C" + My (). 3)

wherec!" is the inside limit value o€ at nodel with respect tdK andc!", is the inside limit value o€
at nodei + 1 with respect toK.
A variational form of the hyperbolic equation is obtained over elenkent

J @mdx=—J V - (vc)m dx, @)
k ot K
wherem is a test function ¢ M?! overK).

By using the Green formula, the following approximation equation is obtained:

[, Femax= | e Vm o= Qe el mec, ) — Qe T, ®)
whereQy ; is the flux at node for elementK. The out-flux is defined as positive and the in-flux as
negative (this flux must be continuous at the interface of two adjacent elements).

To preserve mass balance, the advective fluxes have to be uniquely defined at the interface of two
elements. A choice must be carried out at the interface between the discontinuous:Vadnes®".
The advective flux is obtained by solving a standard Riemann problem in the linear case. In other
words, the numerical advective flux is calculated with the upstream valaeTdfe choice between
the discontinuous valued" andc® depends on the sign @ (c; = ¢l if Qg ; > 0 andc; = ¢ if
Qk.i < 0) (see Figure 1).

Cout c1:n c.in c(.)ut
i i i+l i+1
a K-1 X K X, K+l b

i i+1

Figure 1. Discontinuous limit values ofat nodess; andx;, ;
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598 P. SIEGELET AL.

We will use an explicit time discretization scheme. Considefingt, <t; < ... <t,... and
with At, =t,,, —t, a time discretization, equation (5) becomes

o - i t i t
J AL M dx= [ okCk - Vmdx — Qi 191Gl e " mMXi g — Qici” ™ ™" m(x)). (6)
K n K

By using successivelyn,,; and my, as test functions and solving the Riemann problem at the
interfaces, a system of two unknowns per elemehf;" andc™"** (compounds o€ in the bases
my, andmy,), is obtained. This scheme does not have good stability properties and the calculated
solution oscillates.

To increase the time discretization accuracy, an intermediate time step df times introduced.

The advective fluxes are calculated using the concentration values defined inside éement

Step 1. Calculation of"+/2 with local values

n+12 o
c —c . . _
J o mdx = J Uk CkN - VM dx — Qy 1161 M(Xip1) — Qi i M(X;). (7)
P TA K

Step 2. Calculation of, ;. by solving a Riemann problem

Cr|]<+l* - Cr|1< - n+1/2 in or out,n+1,/2 in or out,n+1,/2
[ e = | k™2 vm b= Qs i) — Qe mex).
K n K
®)

To stabilize this scheme, a slope-limiting step is introduced. The slope-limiting opedrator
associates with each functiai*'" (e M) a functionL(c"*! (e M;) which satisfies the following
conditions.

(a) Preservation of mass balance by

n+1 in,n+1 in,n+1 in,n+1%*
o | Kb TOa g G 9)
K K Axg 2 K 2

b) Limitation of the slope by setting an upper and a lower limit valuetd** andci™"**:
i i+1

(1 — O™ +0min iy, crtt) <™ < (1 - O)cptt 4+ Omax(city, i),  (10)

(1 — 0t + 0min (cpty, e < e < (1 — 0)ck™ + Omax(cpty, cptt),  (11)

where0 is a weighting parametdd < 0 < 1). (With 0 = 1 the previous relations specify that
™! andc]}! have not to be greater or smaller than the mean concentration in the element
K-1,K,K+1)

Relations (10) and (11) imply that &**", is a local minimum or maximum df, thenc!™"** and

in,n+1 :
iy~ are defined by
inn+1 __ .in,n+1 _ n4+1f n+1* n+1* AN+1* n+1* H n+1*
Ciy1 =G =Cg if cg™ > max(cg™;cly) or cgt < mincy'). 12)

If we are not in case (12) (i.e. it is not a local minimum or maximumdpmote thatc}™ is not
uniquely defined by (9)—(11). To define it uniquely, we impose dﬁé’c be as close as possible to
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11

Figure 2. Slope-limiting effects: linear discontinous variation in concentration before (—) and-after () slope limiting

ckt". A minimization problem of dimension two has to be solved for the eleretd determine

et
An objective functionly is defined by
: : : : 2 . 2
JK(Czn’nH, C:TlH-l) _ ‘ C:n,n+1 _ C:n.nﬂ* H +‘ Cﬂ?“ _ C:mﬂ* H . 13)

Thenc!™"*! andc!:]*! are estimated by minimizing the objective functign and satisfying the
constraints (9)-(11). The slope-limiting effects can be visualized graphically as in Figure 2.
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Figure 3. One-dimensional pure advection example
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600 P. SIEGELET AL.

The discontinuous finite element method associated with this slope limiter is total-variation-
diminishing (TVD) if the following criterion is respected:

CFL < max( for every element K,

1
1+420° 2)
CFL being the Courant—Friedrichs—Levy number equaldat/Ax,. The TVD property insures that
the scheme does not produce non-physical oscillations. Moreover, the slope limiter introduces the
smallest amount of numerical diffusion far unit to unity?® Figure 3 shows a numerical pure
advection example. The discontinuous finite element method gives accurate results. In one dimension
this method is very similar to the high-order finite difference method invented by Van't &éwe
discontinuous finite element method is more expensive compared with the high-order finite difference
scheme in one dimension, but it can be easily extended in a true multidimensional scheme.

RESOLUTION OF THE ADVECTION-DIFFUSION EQUATION IN 2D WITH TRIANGULAR
ELEMENTS

Approximation of the convective term

As previously, the convective term is approximated by a discontinuous finite element method. The
two-dimensional domain is discretized with triangular eleméhts

The concentrationc is approximated in a space of discontinuous bilinear functions,
M, = {f|x € (Mk1, Mk, Mk3)}, which means that the restriction bbverK is a linear combination
of Mgy, Mk, and mys.

The functions ofM?! are discontinuous at nodes of discretization. By considering the triangular
elementK formed by nodes A, B and C, the variationdrover K can be written as

Ci (X, ) = M CR + My,CE + MysCE, (14)

wherecX is the value ot at node A in elemerk, cK is the value ot at node B in elemeri andcK
is the value ofc at node C in elemeri.

We denote byl the linear variation irc over edge AB in elemerit andc?4 the linear variation
in c over edge AB in the element adjacentKoln order to simplify the notation; andc (without
index K) will denote the approximations of velocity and concentration over elefdasspectively.
Second-order time discretization is used to solve the hyperbolic equation (2).

Step 1. calculation of"+%/2 with local values

in,n

Cn+1/2 _c" c™'m
L~ mdx=| w"-Vmdx— J AB _ ds
JK 1AL, JK Qc.ae as AB
Cin,nm Cin,nm
— Qk.Bc JBC ﬁ — Qk.ca LA CCLA ds, (15)

wherem is a test function oM? over K, AB (respectivelyBC and CA) is the length of edge AB
(respectively BC and CA) an@ g is the flux through edge AB with respect fiQ »g, the latter
being the unit exterior normal vector of this edge for elenterisignQy ) = signfix ag - 7). The
flux is continuous at the interface of two adjacent elemé&nendK’ (Qx ag + Qag = 0).

By using successively the three basis functionMdfoverK as test functions, we obtain a system
of three unknowns per elemekit The values at each node knhare calculated by solving this local
system.
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SOLUTION OF ADVECTION-DIFFUSION EQUATION 601

Step 2. Calculation of™1" by solving the Riemann problem

Cn+1* _cn Cln or out, n+1/2m
K n K AB
Cin or out,n+1/2 Cin or out,n+1/2
Quec | P e | et (16)

In this step the numerical advective flux is calculated with the upstream ‘value’ofer the
interface of two elements. The choice betwely andc3% depends on the sign @ ag.

(@) If Q.ag = 0, thencag = Cig.
(b) If QK AB < O thenCAB = COUt

The scheme is stabilized with multidimensional slope limiters (extension of the one-dimensional
slope limiter). For elemeni we introduce the following notation.

(a) ¢ is the average of overK: t = (ck +c§ +cf)/3.

(b) min(A) is the minimum of thel™" of all elements having A for a node.

(c) max(A) is the maximum of the”*l* of all elements having A for a node.

(d) min(K) is the minimum of the:““* of all elements having a common node with elemknt

(e) maxK) is the maximum of the”“* of all elements having a common node with elemknt

The multidimensional slope-limiting operatdr associates with each functiasi*!" (e M!) a
function L(c"") = c"*! (e M?) satisfying the following conditions. In order to preserve mass
balance,

el = ot 17)
In order to limit the variation,
min(A) < ¢ < max(A), (18)
min(B) < ¢ < max(B), (19
min(C) < c&™ < max(C). (20)
Whenc)™" corresponds to a local maximum ofin K, then relations (17)—(20) imply that
ciomtt — g+l — Ko+l — ehFTT i DT > max(K) or citT < K min(K). (21)

If we are not in case (213 ™ is not uniquely defined. We impose tigt! be as close as possible
to ckt". A minimization problem of dimension three has to be solved for the element to determine
c”K“.

An objective function] is defined by

* * |2 2
J(CK L E N+l cé n+l) cf\ 41 Cf\ N+l H +H cKin+1 Cg,n+1 H +Hcé’n+l CE N+l H . (22
Thenck ™, ¢k ™! andcS " are estimated by minimizing the objective functiband satisfying

the constramts (17)—(20). The method used to solve this minimization problem is the saddle point
method®*

Approximation of the diffusive term

The diffusive term is discretized with a mixed approximati8iWe introduce the diffusive flux
Gy = —D - Vc. On each elemeri, c andd, are approached by an approximation of
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602 P. SIEGELET AL.

(a) the average of on K: t¢
(b) the average o€ along each edgg; of K, denotedTCy ; fori=1,2,3
(c) gd = —D - Vc, noteddg k-

Gy has the following properties ovég.?*2°

(@) V -Gy is constant oveK.

(b) Vi=1,2,3,q, - A is constnat over fack;, fix; being the unit exterior normal vector of edge
E,.

(c) dqx is perfectly determined by the knowledge of its fIQy  ; through edgeE;(i = 1, 2, 3).

The diffusive flux can be calculated using basis vectorial functi@q_, , ; defined by
J W; - A ds =9 forj=1,2,3,
S
whereg;; is the Kronecker symbol.
The vecto; corresponds to a vector with a flux of unity through e@igand zero flux through the

others. The expressions of the basis functions are given e.g. by Chavent and RoBaytsector
gk can be written as a linear combination @f);_; , 3

3
Aok = X Quk.jWj-
=1
The expression oy « is then written in variational form over each eleméat

J (Dfl.qd,K).ng:_J Ve S dx. (23)
K K

wheres is a sufficient regular test function.
By carrying out the same calculations as Chavent and Robasts obtain approximation equation

3
2; Bide,K,j = q _ TCK,i Vl = 1, 2, 3, (24)
J:
where
Bj = JK [(Dk" - W) - W;] dx.

If we define the symmetric & 3 matrix By associated with elemerK as B¢ = [Bj] (which is
invertible), the previous equation becomes in matrix form

Qqx = Br'(ckDIVK — TCy), (25)
where
1
DIV, = [elementary divergence matrix]" = | 1 |,
1
Qax = [Quk.il- TCx = [TCk il, Bk = [Bjjl-
By using an index notation referring to the edges, the componer(g pfare
Qux.e = CkokE — %; Bk e TCke, Withoge = E;K Bk EE (26)

where) ' denotes a sum over the edgesf K.
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SOLUTION OF ADVECTION-DIFFUSION EQUATION 603

By using the continuity of the diffusive fluxes (i.Qq4x g + Qq ke = 0 for every edgeE, K andK’
being adjacent) and equation (26), the following relation can be obtained:

o gCk + oECk — D BE,lE,E/ TCe — > B}Z’l,E,E’ TCe =0. (27)
E'cK EicK’

This equation is written in matrix form as
MC —NTC —1=0, (28)

whereTC is the vector formed by th€C; VE ¢ Dirichlet-type boundaryC is the vector formed by
thety,

. o if ECK,

M= [ME,K]ne,nk’ with ME,K = {OK’E if E (ZK

N=[Neglen WithNeg= Y  Bgke.
K>E and E/

where) ¢ .. e denotes a sum over the elemektgontaining edge& andE’, and

I =[lgle, withlg = > Byggg TCg VE' e Dirichlet-type boundary.
E'c(KDE)

The numberse andnk are the number of edges and the number of elements respectively. With this
matrix relation we can determiriégC from C by solving the linear equation system whose associated
matrix N is symmetric positive definite:

NTC =MC — 1. (29)

This system is solved efficiently by a standard method such as a preconditioned conjugate gradient
method.
The diffusive termV - g, = —V - (DVc) is then discretized at timg by

| vaa=] v (Z Ghreelie) = & Qe [ fie-fie= X Qe (@0
K K EcK EcK E EcK
V - Gj « being constant oveK, equation (30) can be written as

1
— > Qike (31)

V-Ghy =
dix IK| Eck

where|K] is the area of elemerK.
Plugging equation (26) into (31) gives immediately

. 1 —
V-G =~ <°‘KCF< - (“K,E’TCIQ,E/)>’ (32)
K] E'cK
with
owe= Y Bgke- = ) OkE-
E'cK EcK

Complete solution of the convection—diffusion equation

We now combine the discontinuous finite elements and mixed finite elements for the resolution of
the advection—diffusion equation (1). The initial values of the concentration have to be determined for
the edges and for the nodes in each element.

© 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOR4: 595-613 (1997)
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Step 1. Calculation ot™%/2 with local values. The diffusive terms (32) are introduced into
equation (15):

[ Cn+1/2 _c"
K %Atn

Cin.n m
=| 7"-Vm-Q [ AB__ ds
JK “A8 )z AB

in,n

cinm ¢"'m
BC CA
— Qk.sc J == ds — Qg ca J ———ds
BC c

BC A CA
1 __
— m (OCKCP( — EZK (OCK’E/TCQ’Er)> JK m+ G JK m, (33)
'C

wherem is successively one of the three basis function#éfover K.
The value at timet,,,,, at each node iK is easily calculated by solving a local system. We
determine then the value of™? and the average @foverK. The concentrations per edge"+/2,

are calculated fromﬂ*l/ 2 by solving system (29).

Step 2. Calculation o™ by solving the Riemann problem

cn+1* —ch R Cin or out,n+1/2m Cin or out,n+1/2m
k At K 7 Jas AB " Jee BC
CCAin or out,n+l/2m 1 n+1/2 +1/2
— QK,CAJ —_————— dS —_— {xKCrll / — Z (OCK,E’TCIQ,E’/ ) m
CA CA K] E'ck K
+G J m, (34)
K

wherem is successively one of the three basis function#éf
The values at each node Kare calculated by solving a local system.

Step 3. Slope limitationVe calculateci™ satisfying (17)—(21) as close as possiblet6' . The
concentrations per edg&C"*!, are then calculated from;™ by solving system (29).

With this method the mass balance is exact over each elegfnditite advective fluxes are uniquely
defined by solving a Riemann problem at the interface of two elements. The dispersive flux is
continuous from one element to the adjacent one. Dirichlet boundary conditions have to be imposed
for the edges and for the nodes per element. This technique has been developed for any kind of
triangular elements: regular (equilateral) or irregular. The accuracy and robustness of the method are
now tested in two comparison studies. This method will be referred to as the discontinuous finite
element method.

COMPARISON STUDIES
Test problem 1

In the first test problem the transport of a pulse in a rectangular two-dimensional region (Figure 4)
is modelled for a pure advection problem. The flow is assumed to be uniform. The mesh being
regular, this problem has the advantages that the transport occurs at various angles and the Courant
number is not constant over the simulation domain. With the irregular mesh we test the robustness of
the scheme presented here against the high-order finite volume method developed by attfiti
Their approach is based on a finite volume formulation and an implementation of a high-resolution
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Figure 4. Advection of a pulse in an irregular mesh
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Figure 5. Pulse shape after displacement in domairPéor co
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upwind scheme for the discretization of the convective fluxes. By defining triangular cells, this

scheme seems to be very attractive.

Figure 4 also illustrates the pulse with an initial height of 10 units at the beginning of the
simulation. Figure 5 shows the transport of the pulse just before reaching the limit of the domain with

© 1997 by John Wiley & Sons, Ltd.
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100m 1

Velocity
40m

] X
-8 |
Dirichlet boundary c=10

-20 L _

Figure 6. Two-dimensional convection—diffusion problem

the two methods. As mentioned by Putt al,'® their scheme destroys the accuracy when non-
equilateral triangles are considered. What is surprising is how the accuracy is lost on this example.

Test problem 2

For the second application we compare our scheme with the high-order finite volume method of
Putti et al® and with a classical finite element method. These numerical methods are verified against
a two-dimensional analytical solution corresponding to the following conditions (Figure 6).

(@) The domain is homogeneous.

(b) The flow is one-dimensional and steady state; the pore velodftyparallel to thex-axis.

(c) The initial condition is zero initial concentration.

(d) The boundary condition is a Dirichlet condition(0,y,t > 0) = ¢, if |y| < a (in our case
a=8m).

The analytical solution for this case is given by Leij Feike and D&eo compare the accuracy of
the different methods, this problem is solved for various values of the grid Peclet number (designated
Pe) as defined by Putgt al*° The solution of this problem is shown at tirhe- 50 s. The parameters
used in the different cases are reported in Table I. Regular (Figure 7) and irregular (the same as the
one used in the first case study, Figure 4) meshes are used to study mesh effects on the numerical
results.

In the first case the transport is diffusion-dominatBd < 2). This case can be easily solved with
the classical methods (conforming finite elements, mixed finite elements or finite differences). We did
verify that the solution obtained with the discontinuous finite element method and the irregular grid
agrees well with the analytical solution (Figure 8).

The second case is advection-dominateel £ 10). Longitudinal profiles ay = 4 m are used to
see the effects of both longitudinal and transverse diffusion. The solutions obtained for the regular
mesh with the high-order finite volume method and the discontinuous finite element method are very
close to the analytical solution (Figure 9). The concentration front is well described. The results

Table |I. Parameters used in various cases

v(X) u(y) D, Dy Ax Ay Pe
Case (msh (ms™ (m?s™h (m?s™h (m) (m)
1 1.0 00 2 02 2.0 2.0 1
2 1.0 00 02 002 20 2.0 10
3 1.0 00 2x107° 2x10°° 2.0 2.0 10000
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Figure 7. Regular mesh

obtained with the mixed approximation show oscillations (Figure 10). The data show a well-known
result: the ‘classical’ methods are not adapted to approximate an advection-dominated transport
equation. With the irregular mesh the discontinuous finite element method gives accurate results
(Figure 11). On the other hand the high-order finite volume method now introduces longitudinal
diffusion and transverse artificial diffusion (Figure 12).

The third case is a more advection-dominated case Rdtk 10, 000. On the profiley = 4 with
the two high-order methods (finite volume and discontinuous finite element approaches) no
significant numerical diffusion appears for the regular mesh. With the irregular mesh the solution of
the high-order finite volume method shows longitudinal diffusion (Figure 13). Good results were
obtained with the discontinuous finite element method and the irregular mesh (Figure 13).

Y (m)

-20- S —
25 50 75 100
X (m)
Analytical solution
204

Y (m)

25 50 T 75 T 00
X (m)
Discontinuous F E. solution

Figure 8. Analytical solution for diffusion-dominated case and computational results given by discontinuous finite element
method with irregular mesh
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20— e

Y (m)

0 25 50 75 100
X (m)
Analytical solution
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0 25 50 75 100 =00
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2
L]
+
i
;

) .2‘5 T 50—_ o 75 o 160
X (m)
Discontinous F.E. solution

Figure 9. Comparison of results given by two high-order numerical methods (with regular mesh) and analytical solution for
Pe =10

To see the effects of the time step on the numerical results of the two high-order methods, the third
case Pe = 10,000) was studied with the regular mesh. Figures 14 and 15 show the numerical results
obtained with both methods for various Courant—Friedrich’s—Levy numbers.

For a linear convective flux and triangular elemei@&L can be defined a8

_ 1§y [0-Tilds

P=2 K| At. (35)

CFL

This is a possible calculation f@FL with triangular elements, but other definitions are available.
For example, Kaddouif proposes the formul&FL, = (|| © || xAt)/h, h being the ratio between the
surface and perimeter of the triangle ap@ | the norm of the velocity. Of course the stability
criterion depends on the choice of tl&L definition.
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1

~= Analytical solution
g — # - Discontinuous F.E.
—0o—~High-order B.V.
h +- Mixed PF.E.
7 —
5 —
3 —

-1 T l T
0 20 40 60 80 100

Figure 10. Comparison of results given by two high-order numerical methods (with regular mesh), mixed method and analytical
solution using profiley = 4 (for Pe = 10

With a choice off =1 (which introduces the smallest amount of numerical diffusion in the slope
limitation associated with the discontinuous finite elements), numerical experiments suggest that the
scheme is stable fdCFL, < 0-9. The algorithm proposed by Pudt all® gives accurate results for
CFL, = 1. The concentration front is indeed well described with the high-order finite volume method

.20 .
25 50 75 100
X (m)
Discontinuous F E. solution
20

25 s0 75 100
X (m)
High-Order F.V. solution

Figure 11. Comparison of results given by two high-order numerical methods with irregular mesle ¢ot0)
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Figure 12. Comparison of results given by two high-order numerical methods (with irregular mesh) and analytical solution

using profiley = 4 (for Pe = 10)

for CFL, = 1 (Figure 14). Numerical diffusion appears with this scheme wbieh, goes away from
unity (Figure 14). With the discontinuous finite element method the concentration front is well
described for the variou€FL, (Figure 15), but with the restriction ofFL, < 0-9. Only small
diffusion appears wher€FL, is far from 09: this is certainly due to the fact that we use a

11

10

—=—Dlscontinuous F.E.
—o— Higk-order F.V.
~——Anaiytical solutfon

0

[ L L T ! ]
10 20 30 40 50 60 70 80 90
X

100

Figure 13. Comparison of results given by two high-order numerical methods (with irregular mesh) and analytical solution

using profiley = 4 (for Pe = 100, 000)
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Figure 14. Effects of time step on numerical results given by high-order finite volume method
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discontinuous formulation for the description of the concentration in each element. The presented

scheme is unstable f@FL, = 1 (Figure 15).

The discontinuous finite element method is well adapted to the modelization of real cases where
the velocity is not constant in the domain. In our example this is not the case of the high-order finite
volume method: the numerical results obtained with this method seem to be very sensitive to any

variation in space oCFL.

© 1997 by John Wiley & Sons, Ltd.
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Figure 15. Effects of time step on numerical results given by discontinuous finite element method
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CONCLUSIONS

A method based on discontinuous finite elements for the discretization of the advective term and
mixed approximation for the diffusive term is presented for the numerical solution of the solute
transport equation in a porous medium. With the discontinuous finite element method the advective
fluxes are uniquely defined by solving a Rieman problem at the interface of two elements. This
method stabilized with a slope limiter is especially adapted to the resolution of hyperbolic equations.
The slope limiter introduces small amounts of numerical diffusion when sharp concentration fronts
occur. With the mixed approximation the diffusive flux is continuous from one element to the
adjacent one and the mass balance is exact over the element. The introduction of the mixed diffusive
term in this method requires the resolution of a linear equation system whose associated matrix is
symmetric positive definite. This operation increases the computational cost compared with classical
high-order finite difference schemes. The combination of these two methods can be applied to 2D and
3D models using different types of elements with regular and irregular meshes. A two-dimensional
scheme is developed using triangular elements.

With this smooth, numerical oscillations are completely avoided fro the full range of grid Peclet
numbers. Numerical tests show good agreement with 1D and 2D analytical solutions. This approach
is compared at the same time with two numerical methods, namely a mixed finite element method
and a finite volume approach with high-resolution upwind terms. Regular and irregular meshes are
used for the numerical tests to study mesh effects on the numerical results. The irregular mesh
destroys the global second-order accuracy of the high-order finite volume scheme. The discontinuous
finite element method performs well with triangles of any shape and for the full range of Peclet
numbers. The discontinuous finite element method is not very sensitive to the varia@éih (fvith
the restriction ofCFL < 0.9 if CFL is defined by equation (35)) compared with the high-order finite
volume scheme, wher€FL has to be as close as possible to unity.

In practical situations the presented algorithm is very useful as long as the mass transport is more
and more solved in strongly heterogeneous media and the transport equation consequently becomes
advection-dominated.
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